神奈川歯学, 53-1·2, 54~55, 2018

Mini Review

Keywords

Antimicrobial silane coupling agent, Contact-active antimicrobial effect, Polymicrobial biofilm model

Antimicrobial activity of a novel silane coupling agent having quaternary ammonium salt using polymicrobial biofilm model

Kaori MIYAKE-AOKI^{*,1}, Kiyoshi TOMIYAMA², Katsura OHASHI¹, Yuka KAMEYAMA¹, Yuuki WADA¹, Tota SHIMIZU³, Norio YOSHINO⁴, Yoshiharu MUKAI², Nobushiro HAMADA³, Toshio TERANAKA² and Tomotaro NIHEI¹

¹)Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University ²)Department of Oral Interdisciplinary Medicine (Restorative Dentistry) Graduate School of Dentistry Kanagawa Dental University, Japan ³)Department of Oral Interdisciplinary Medicine (Prosthodontics & Oral Implantology) Graduate School of Dentistry Kanagawa Dental University, Japan ⁴)Department of Industrial Chemistry, Tokyo University of Science, Japan (Accented Scretewider 10, 2018)

(Accepted September 19, 2018)

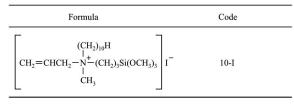
Abstract

The purpose of investigation was to evaluate the antimicrobial activity of a novel quaternary ammonium silane coupling agent, *N*-allyl-*N*-decyl-*N*-methyl-*N*-trimethoxysilylpropylammonium iodide (10-I), against early-stage biofilms using a polymicrobial biofilm model that simulates oral plaque-like biofilm formation on a solid phase. The cover glasses immersed in 10-I for 1 hour to modify the surface.

The polymicrobial biofilm was prepared as reported by Exterkate et al., we calculated colony forming unit (CFU). CFU of the 10-I group was about 80% lower than that of the control group, demonstrating strong antimicrobial activity. The surface modification with 10-I represents an effective means for treatment of oral indigenous bacteriarelated dental diseases found in the elderly and immunocompromised people and possible systemic complications such as aspiration pneumonia.

*Corresponding author: Kaori MIYAKE-AOKI

Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University 82 Inaoka, Yokosuka, Kanagawa, 238-8580, Japan Tel: +81-46-822-8864 Fax: +81-46-822-8864 E-mail: k.miyake@kdu.ac.jp


We have also studied their application for prevention of caries and periodontal disease through suppression of adhesion and formation of plaque and decalcification of dentine¹⁻³⁾. We synthesized a new quaternary ammonium-based antibacterial silane coupling agent, *N*-allyl-*N*-decyl-*N*-methyl-*N*-trimethoxysilylpropylammonium iodide (10-I; Tokyo University of Science), for imparting the immobilized antimicrobial activity to substrate surfaces⁴⁾.

In this study, we evaluated the antimicrobial activity

of 10-I against earlystage biofilms using a polymicrobial biofilm model⁵, in which oral plaque-like biofilms can be formed on a solid phase.

10-I was prepared at 800 ppm with ethanol. The chemical formula of the modifier is shown in Table. The polymicrobial biofilm was prepared as reported by Exterkate et al.⁶). The viable bacteria in each culture were then counted. Colony forming unit (CFU) counts in polymicrobial biofilms are shown in figure. CFU in the 10-I group was 3.4×10^4 CFU/disk, an 80% reduction

Table. Chemical formula and code of the surfactant used in this study

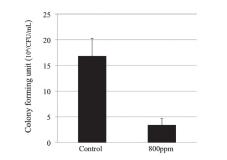


Figure. Colony forming unit of polymicrobial biofilms on the glass surface modified with 10-I.

CFU in the 10-I group was 3.4×10^4 CFU/disk, an 79.8% reduction compared to that of 16.8×10^4 CFU/disk in the control group, demonstrating strong antimicrobial activity.

compared to that of 16.8×10⁴ CFU/disk in the control group, demonstrating strong antimicrobial activity.

In this study, we evaluated the antibacterial activity of 10-I against earlystage biofilms using a polymicrobial biofilm model, in which oral plaque-like biofilms can be formed on a solid phase. The result indicated that polymicrobial biofilm formation was strongly inhibited by 10-I modified glass plates. This result suggests that the surface modification with 10-I is an effective means for suppression or prevention of not only oral indigenous bacteria-related dental diseases observed in the elderly and immunocompromised individuals but also possible systemic complications such as aspiration pneumonia.

Acknowledgement

This work was supported in part by Major Course Field Integrated Fundamental Research 1, Graduate School of Dentistry, Kanagawa Dental University.

References

- Yoshino N, Kondo Y, Yamauchi T. Syntheses and reactions of metal organics. XXI. Syntheses of (1H,1H,2H,2Hpolyfluoroalkyl) trimethoxy silanes and surface modification of glass. *J Fluorine Chem* **79**: 87-91, 1996.
- Yoshino N, Teranaka T. Synthesis of silane coupling agents containing fluorocarbon chain and applications to dentistry: Plaque-controlling surface modifiers. *J Biomater Sci Polymer Ed* 8: 623-653, 1997.
- Kondo Y, Yokokura H, Yoshino N. Synthesis of fluorocarbonhydrocarbon hybrid surfactants having a phosphate group. JOCS-AOCS World Congress (JAWC) 2000; 305, P-097.
- Yoshino N, Sugaya S, Nakamura T, Yamaguchi Y, Kondo Y, Kawada K, Teranaka T. Synthesis and antimicrobial activity of quaternary ammonium silane coupling agents. *J Oleo Sci* 60: 429-438, 2011.
- Exterkate RAM, Crielaard W, Ten Cate JM. Different response to amine fluoride by Streptococcus mutans and polymicrobial biofilms in a novel high-throughput active attachment model. *Caries Res* 44: 372-379, 2010.
- Fine DH, Furgang D, Barnett ML. Comparative antimicrobial activities of antiseptic mouthrinses against isogenic planktonic and biofilm forms of actinobacillus actinomycetemcomitans. *J Clin Periodontol* 28: 697-700, 2001.