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ABSTRACT

Objectives: Salivary glands produce brain-derived neurotrophic factor (BDNF), which increases plasma
BDNF content. Salivary BDNF influences the hippocampus and enhances anxiety-like behaviors. Dysli-
pidemia affects the brain, promoting depression and anxiety-like behaviors. This study was performed to
investigate whether hypertriglyceridemia influences salivary BDNF expression.
Methods: Hypertriglyceridemia was induced in rats by high-fat diet intake for 10 weeks. BDNF protein
levels in the saliva and submandibular glands were measured using enzyme-linked immunosorbent
assay (ELISA). Bdnf mRNA levels in the submandibular gland were determined using real-time poly-
merase chain reaction.
Results: A hypertriglyceridemia rat model was established. Body weight did not differ between the
control and hypertriglyceridemia groups. Bdnf mRNA and protein expression was increased in the sub-
mandibular gland in the hypertriglyceridemia group compared to the control group. BDNF expression
was also significantly increased in the saliva of the hypertriglyceridemia group.
Conclusions: This is first study to show that hypertriglyceridemia induces BDNF expression in the rat
submandibular gland and suggests that salivary BDNF is associated with lipid metabolism.

© 2020 Japanese Association for Oral Biology. Published by Elsevier B.V. All rights reserved.

1. Introduction

exogenously through the diet or through synthesis in the liver.
Although cholesterol is a necessary nutrient, prolonged high levels

Dyslipidemia is a state in which levels of low-density lipoprotein
(LDL) cholesterol and triglycerides in the blood are higher than
normal, or the levels of high-density lipoprotein (HDL) cholesterol
are decreased [1]. Lipids in the blood are primarily derived

Abbreviations: BDNF, brain-derived neurotrophic factor; ELISA, enzyme-linked
immunosorbent assay; PCR, polymerase chain reaction; LDL, low-density lipopro-
tein; HDL, high-density lipoprotein; TG, triglyceride; H&E, hematoxylin-eosin; TrkB,
tyrosine receptor kinase B.
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of cholesterol can cause arteriosclerosis and increase the risk of
cerebral infarction or myocardial infarction [1]. Dyslipidemia not
only causes abnormalities in the circulatory system but also affects
the brain, increasing depression-like and anxiety-like behaviors [2].
Additionally, experiments in rats fed a high-fat diet showed that
dyslipidemia is likely involved in diet-induced and/or obesity-
induced cognitive decline [3]. Thus, dyslipidemia affects various
organs and diseases.

Brain-derived neurotrophic factor (BDNF) is a very important
molecule involved in the maintenance and transmission of nerve
cells and synaptic plasticity, among other functions [4,5]. We pre-
viously reported that acute or chronic immobilization stress
loading increases BDNF levels in the salivary glands and blood [6,7].
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Increased BDNF in the salivary glands is correlated with a slight
increase in the total amount of BDNF in the hippocampus [8]. Under
stressful conditions, BDNF in the hippocampus is decreased, but
salivary gland-produced BDNF may compensate for this in the
hippocampus [9].

The role of BDNF has been widely examined in nerve cells of the
central nervous system. In recent years, novel roles for BDNF
outside of the nervous system have attracted attention [10],
particularly its relationship with lipid metabolism [11,12]. However,
the relationship between dyslipidemia and BDNF in the salivary
glands is not well understood. In this study, we examined whether
environmental changes such as dyslipidemia affect BDNF expres-
sion in the salivary glands.

2. Materials and methods
2.1. Animals

A total of 12 male Sprague—Dawley rats, aged 3 weeks (Japan
SLC, Shizuoka, Japan), were housed in groups (3 per cage; cage
dimensions, 260 x 380 x 180 mm) under pathogen-free conditions
with controlled temperature, humidity (22 + 3 °C, 55 + 3%), and
lighting (12-h:12-h light: dark cycle), and free access to food and
water. After a 2—3 day acclimation period, the rats were randomly
divided into a normal diet group (n = 12) and high-fat diet group
(n = 12) and fed ad libitum for 10 weeks. The normal diet pro-
portions were 54% carbohydrate, 20% protein, and 4.5% fat (MF;
ORIENTAL YEAST Co., Ltd., Tokyo, Japan) [13]. The high-fat diet
consisted of 58% lard (wt/wt), 30% fish powder, 10% skim milk, and a
2% vitamin and mineral mixture, equivalent to 7.5% carbohydrate,
24.5% protein, and 60% fat (F2WTD; ORIENTAL YEAST Co., Ltd.) [13].
All experiments were performed using a 10-week high-fat diet
group and control group, unless otherwise indicated. Six rats from
each group were used for histological analysis (hematoxylin-eosin,
Oil red O, and immunohistochemical staining). Tissues from the
remaining six rats were analyzed by real-time polymerase chain
reaction (real-time PCR) and enzyme-linked immunosorbent assay
(ELISA). To avoid diurnal variations in hormone expression that
may affect cytokine production, we conducted all experiments
between 13:00 and 16:00 h. All experimental procedures used in
this study were reviewed and approved by the Ethics Committee
for Animal Experiments of Kanagawa Dental University (approval
number 2019—006) and performed in accordance with the
Guidelines for Animal Experimentation of Kanagawa Dental Uni-
versity and ARRIVE guidelines for reporting animal research.

2.2. Saliva, blood, and tissue sample collection

After the 10-week period, all rats were deeply anesthetized by
inhalation of 1-2% isoflurane and injected intraperitoneally (i.p.)
with 1 mg/kg, pilocarpine-HCl (Sanpilo 1%; Santen Pharmaceutical
Co., Ltd., Osaka, Japan) for saliva collection. Saliva secreted into the
oral cavity during each 1-min period following the injection of the
above stimulants was carefully collected into capillaries for 15 min
(ringcaps; Hirschmann Laborgerate GmbH & Co. KG, Eberstadt,
Germany) [14]. Next, the rats were exsanguinated by cardiac
puncture under general anesthesia. Blood samples were collected
and allowed to coagulate for 10 min at 22 °C before centrifugation
to obtain plasma samples [15,16]. Plasma was used for blood
biochemistry tests (triglyceride (TG), HDL cholesterol (HDL), LDL
cholesterol (LDL), total cholesterol, and blood glucose). At the same
time, tissue samples were collected, including samples from the
submandibular gland, liver, adrenal gland, pancreas, kidney, and
inguinal region fat, as previously described [15,17]. Aliquots of
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saliva, plasma, and tissue samples were immediately stored
at —80 °C until use.

2.3. Histological analysis

Rats were sacrificed under deep anesthesia as described above
between 13:00 and 16:00 h; rats in the experimental groups were
sacrificed immediately after salivary sampling and blood collection,
as described above. Resected rat liver and submandibular gland
tissue samples were fixed in 10% buffered formaldehyde (pH 7.4)
for 24 h and embedded in paraffin, after which serial 3-um sections
were cut and stained with hematoxylin-eosin (H&E) and processed
for immunohistochemistry analysis. Frozen liver and submandib-
ular gland sections were stained with Oil red O to reveal the
presence or absence of intracellular lipids. Histological changes in
the liver and submandibular gland were evaluated by H&E and Oil
red O staining under a light microscope (B x 41, Olympus, Tokyo,
Japan).

2.4. RNA extraction and cDNA synthesis isolation

Total RNA was isolated from the tissue samples using ISOGEN
reagent (Nippon Gene, Toyama, Japan) according to the manu-
facturer's instructions. The RNA product was resuspended in 20 puL
of diethyl pyrocarbonate-treated water. The quality of the RNA was
judged from the pattern of ribosomal RNA after electrophoresis
through a 1.5% agarose gel containing ethidium bromide, visualized
by UV illumination. RNA concentrations were determined by
measuring the absorbance at 260 nm with a SmartSpec Plus
spectrophotometer (Bio-Rad, Hercules, CA, USA). RNA was stored
at —80 °C until use. Total RNA was reverse-transcribed at 50 °C for
30 min, 99 °C for 5 min, and 58 °C for 5 min using a single-strand
cDNA synthesis kit (Roche Diagnostics, Basel, Switzerland) ac-
cording to the manufacturer's instructions [18]. Following the
reverse transcriptase reaction, cDNA products were stored
at —20 °C until use.

2.5. Real-time PCR analysis

Real-time PCR was performed using a LightCycler 480 system
(Roche) according to the manufacturer's instructions [19]. Re-
actions were performed in a 20 pL volume (0.3 mM of each primer
and 4 mM MgCl;). Reaction mixtures containing Taq DNA poly-
merase, nucleotides, and buffer were prepared with LightCycler-
DNA Master SYBR Green I mix (Roche Diagnostics). Oligonucleo-
tide primers designed to amplify rat Bdnf were specific for the
coding region of exon 5. The Bdnf-specific primer sequences were
5'-CAGGGGCATAGACAAAAG-3’ (forward) and 5'-
CTTCCCCTTTTAATGGTC-3' (reverse) (PCR product: 167 bp) and
were designed and synthesized by Nippon Gene Laboratory [9].
Real-time PCR to amplify the rat B-actin (Actb) housekeeping gene
was performed using a LightCycler Primer/Probe set, 5'-
CCTGTATGCCTCTGGTCGTA-3’ (forward) and 5'-CCATCTCTTGCTC-
GAAGTCT-3' (reverse) (PCR product: 260 bp) according to the
manufacturer's instructions (Nihon Gene Research Labs, Inc., Sen-
dai, Japan). Denaturation was performed at 95 °C for 10 min, fol-
lowed by 40 cycles of 95 °C for 10 s, 60 °C for 10 s, and 72 °C for 10 s.
Melting analysis and agarose gel electrophoresis were performed to
confirm the specificity of the PCR products obtained using each
primer pair. Gene expression is presented as the ratio of the copy
number of Bdnf mRNA to Actb mRNA for each sample, as described
previously [8].
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2.6. BDNF ELISA

Tissue samples (submandibular gland, liver, adrenal gland,
pancreas, kidney, inguinal region fat) were homogenized in ice cold
lysis buffer composed of 137 mM Nacl, 20 mM Tris—HCI (pH 8.0), 1%
NP40, 10% glycerol, 1 mM phenylmethylsulfonyl fluoride, 10 mg/mL
aprotinin, 1 pg/mL leupeptin, and 0.5 mM sodium vanadate. The
tissue homogenate solutions were centrifuged at 14,000xg for
15 min at 4 °C. Total protein concentrations were determined using
the Bradford method with absorbance readings measured at
595 nm on a SmartSpec Plus spectrophotometer (Bio-Rad). The
concentration of BDNF in the submandibular gland, liver, adrenal
gland, pancreas, kidney, inguinal region fat, and saliva samples
were quantified by sandwich ELISA (CYT306, Merck Millipore,
Billerica, MA, USA), according to the manufacturer's instructions
[20,21]. All assays were performed in F-bottom 96-well plates
(Nunc, Roskilde, Denmark). BDNF standards and samples were
incubated at 4 °C, overnight. Tertiary antibodies were conjugated to
horseradish peroxidase and color was developed with tetrame-
thylbenzidine and measured at 450 nm using the iMark Microplate
Reader (Bio-Rad). All samples were tested twice, and the mean was
calculated. Cross-reactivity to related neurotrophins (NGF, NT-3,
and NT-4) was less than 3%. Intra- and inter-assay coefficients of
variation were 3.7% and 8.5%, respectively. Concentrations of BDNF
were determined by creating a calibration curve (standard curve)
and calculating concentrations based on this calibration curve and
the absorbance of the samples.

2.7. Tissue preparation for BDNF immunohistochemistry analysis

Immunohistochemical analysis was performed using the Simple
stain MAX-PO (Nichirei, Tokyo, Japan). Slides were pre-incubated in
3% Hy0, for 5 min. The sections were then incubated with an anti-
human BDNF monoclonal antibody (1:100, MAB248, Techne, Min-
neapolis, MN, USA) for 1 h at 22 °C, as described previously [22,23].
After washing with PBS, the sections were incubated with the
secondary antibody, horseradish peroxidase-labeled anti-rabbit IgG
with amino acid polymer (Nichirei), for 30 min at 22 °C. Color was
developed using 0.02% 3,3’-diaminobenzidine-tetrahydrochloride
containing 0.0003% H,0, in Tris-buffered saline for 5 min, followed
by counterstaining with hematoxylin. For negative control experi-
ments, non-immunized rabbit or mouse IgG was used instead of
the primary antibody. To determine the binding specificity, a
competitive assay was also conducted using recombinant BDNF
(R&D Systems, Inc., Minneapolis, MN, USA).

2.8. Statistical analysis

Statistical analyses were performed using GraphPad Prism (v.
6.05.; GraphPad, Inc., San Diego, CA, USA). Values are reported as
the mean + standard deviation. Data were analyzed using Welch's-t
test. P values < 0.05 were considered statistically significant. Sta-
tistical analysis was performed under the advice of Prof. Ayumi
Shintani (Department of Clinical Epidemiology and Biostatistics,
Osaka University Graduate School of Medicine).

3. Results
3.1. Body weight, total food intake, and total energy

There were no differences in the mean body weight between the
normal diet and high fat diet-fed groups at the end of the experi-
ment in 13-week-old rats (mean final body weight, control:
426.90 + 34.41 g; dyslipidemia: 444.32 + 63.22 g; Fig. 1A). Total
food intake in the hypertriglyceridemia group was significantly
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lower than that in the control group (mean total food intake, con-
trol: 123122 + 111.76 g; hypertriglyceridemia group:
822.18 + 119.01 g, P < 0.0001; Fig. 1B). Total energy ingestion was
significantly lower in the hypertriglyceridemia group than in the
control group (mean total energy, control:
18493539 + 1678.675 KkJ; hypertriglyceridemia group:

15507.431 + 2244.741 K, P < 0.05; Fig. 1C).
3.2. Blood biochemistry

To evaluate the effect of normal or high-fat diet on blood
biochemistry parameters, we measured the concentrations of tri-
glyceride (TG), high-density lipoprotein (HDL) cholesterol, low-
density lipoprotein (LDL) cholesterol, total cholesterol, and blood
glucose in the plasma. The hypertriglyceridemia had significantly
higher TG, HDL, LDL, and total cholesterol concentrations in the
plasma compared to the control group (P < 0.01; Fig. 2A). Blood
glucose did not differ between the control group and hyper-
triglyceridemia group (p > 0.05; Fig. 2A).

3.3. Histological changes in the liver

To evaluate the histological changes in liver tissues following the
consumption of different diets, we performed a morphological
examination. As shown in Fig. 2B, both H&E and Oil red O staining
revealed a greater induction of hepatocyte ballooning, inflamma-
tion, and hepatic steatosis in the hypertriglyceridemia group
compared to the control group.

3.4. Histological changes in the submandibular gland

To evaluate histological changes in the submandibular gland
tissue after the consumption of the different diets, we measured
the wet weight of the submandibular gland and observed tissue
morphology. No significant differences were observed in the right
and left side wet weight of the submandibular glands between the
control group and hypertriglyceridemia group (Fig. 3A). As shown
in Fig. 3B, based on H&E and Oil red O staining, the submandibular
gland tissue showed no characteristic changes in the acinar cells,
mucous cells, myoepithelial cells, and duct cells in the hyper-
triglyceridemia group.

3.5. Bdnf mRNA expression in rat submandibular gland tissue

Bdnf mRNA expression in the submandibular gland was signif-
icantly higher in the hypertriglyceridemia group
(0.005057091 =+ 0.000718292) than in the control group

(0.000876459 =+ 0.000186429) (P < 0.0001; Fig. 4A).

3.6. Expression of BDNF protein in the submandibular gland, saliva,
and plasma

BDNF levels in the submandibular gland tissue were signifi-
cantly increased in the hypertriglyceridemia group (78.15 + 3.10 pg/
mg) compared to the control group (7.40 + 0.29 pg/mg, P < 0.0001;
Fig. 4B). Saliva BDNF was significantly elevated in the hyper-
triglyceridemia group (19.94 + 4.63 pg/mL) compared with the
control group (5.25 + 1.85 pg/mL, P < 0.001; Fig. 4B).

3.7. BDNF immunohistochemistry in the submandibular gland

Submandibular gland tissue from the control group showed
little to no expression of BDNF in various duct-type cells (white
arrows in Fig. 5A), acinar cells and myoepithelial cells (white ar-
rowheads in Fig. 5A). Intense BDNF expression was observed in
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Fig. 1. Body weight and total food intake in the control and hypertriglyceridemia groups. (A) There was no difference in body weight between the hypertriglyceridemia group
and control group at 13 weeks of age (B) Total food intake was significantly different between the control and hypertriglyceridemia groups after 10 weeks (C) Total energy ingestion
was significantly different between the control and hypertriglyceridemia groups. Values are the mean + standard deviation (n = 6); *p < 0.05, ***p < 0.0001 by Welch's-t test. N.S:

not significant.

various duct-type cells from the hypertriglyceridemia group (black
arrows in Fig. 5B); however, BDNF expression was not consistently
observed in acinar cells or myoepithelial cells in the hyper-
triglyceridemia group (black arrowheads in Fig. 5B).

3.8. Expression of BDNF protein in various organs

BDNF protein expression was measured in the liver, adrenal
gland, pancreas, kidney, and inguinal region fat in the control group
and hypertriglyceridemia group (Fig. 6). The hypertriglyceridemia
group had significantly lower BDNF expression in the liver and
adrenal gland tissue compared to the control group. There were no
differences in BDNF protein levels between the control group and
hypertriglyceridemia group in the pancreas, kidney, and inguinal
region fat.

4. Discussion

In this study, TG, HDL, LDL, and total cholesterol were elevated
in the blood of rats in the hypertriglyceridemia group compared to
the controls. Furthermore, because there was no difference in
glucose between the control group and hypertriglyceridemia
group, we established a rat model with abnormal lipids without
abnormal sugars. This is because the high fat diet feed does not
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contain sugar. Moreover, in the hypertriglyceridemia group, the
rats consumed smaller amounts of food, and their body weight
did not significantly increase compared to the control group.
Similar findings were observed in dyslipidemia model rats pro-
duced using the same diet [24]. There are many reports stating
that rodents fed a high-fat diet have a significantly higher final
body weight than those fed a low-fat diet [25—27]. However, in
this study, there was no difference in body weight, likely due to
differences in breeding environments and conditions [25—27]. In
most previous studies, rats were individually housed [25—27];
however, in this study, three rats were housed per cage. In the
breeding environment and conditions in this study, fighting
among rats could have increased or decreased. In addition, the
total energy ingestion was significantly lower in the rats in the
high-fat diet compared to the normal diet, which is likely
responsible for the lack of difference in the final body weights.
Furthermore, because the fat tissue weight in the accessory tes-
ticle increases, lipid deposition is observed in the tissue [24].
Histological analysis of the liver clearly revealed fatty liver, indi-
cating that various organs had lipid deposits. In the salivary gland,
as adipose tissue increases, salivary gland function declines in
aging rats [28]. However, lipid deposition in the submandibular
gland was not observed with Qil red O staining in the model rats.
There was no significant difference in the salivary gland wet
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weight between the control group and hypertriglyceridemia
group. Additionally, in our model, macroscopic and microscopic
changes were not observed in the salivary glands. However,
Matczuk et al. reported that TGs were increased in the subman-
dibular glands of rats fed similar diets; thus, further studies are
needed to determine how fats such as TG are involved in salivary
gland function [29].

The BDNF protein concentration in the submandibular gland
tissue and the BDNF mRNA expression in the submandibular gland
were significantly increased in the hypertriglyceridemia group
compared to the control group. Particularly, BDNF levels were very
low in the control group. BDNF expression in the rat salivary glands
is generally very low under non-stress conditions [18]. Here, high-
fat diet increased BDNF production in the salivary glands. No pre-
vious studies have shown that BDNF is increased in the salivary
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glands of rats with hypertriglyceridemia. The mechanism by which
the high-fat diet increases salivary gland BDNF is unclear.
Numerous factors contribute to increased BDNF, such as mastica-
tion [9], mild physical exercise [30], dietary restrictions [31],
obesity [32], and some foods [33,34]. Additionally, adding different
fatty acids to a high-fat diet changes the blood BDNF concentration
[35]. In rats, blood BDNF concentration is associated with the sali-
vary glands [22], and lipids likely increase salivary gland BDNF.

As BDNF in the salivary glands increased, BDNF in the saliva also
increased in the high-fat diet group, as expected. Saruta et al. re-
ported that BDNF in the salivary glands is transported to the brain
[8]. Hayashi et al. also reported that when lactoferrin was admin-
istered in the lower tongue, it transited to the brain, where it
increased the total amount of lactoferrin [36]. The lower tongue is
also a route of drug administration and is therefore a systemic
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Fig. 5. BDNF immunohistochemistry analysis in submandibular glands of control and hypertriglyceridemia groups. Photomicrographs show the immunohistochemical
localization of BDNF protein, identified with an anti-BDNF monoclonal antibody in paraffin-embedded sections of submandibular gland from (A) control group and (B) hyper-
triglyceridemia group. Control group showed little to no expression of BDNF in various duct-type cells (white arrows (A)) and acinar cells or myoepithelial cells (white arrowheads
(A)) in the submandibular gland tissues. BDNF protein was observed in duct cells (black arrows (B)), and there was no obvious BDNF expression in acinar cells or myoepithelial cells

(black arrowheads (B)) in the hypertriglyceridemia group. Scale bars = 20 pm.

transition route. Based on this, BDNF in the saliva may also transit to
the rat brain. Toriya and colleagues showed that when the BDNF
receptor tyrosine receptor kinase B (TrkB) in the paraventricular
nucleus was suppressed, food intake increased and weight
increased accordingly [37]; it is unclear where the BDNF was
injected, although TrkB is expressed in the paraventricular nucleus
[37]. Compared to the control group, rats in the hyper-
triglyceridemia group had a lower food intake, suggesting that
BDNF may be involved in a feeding suppression mechanism in the
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central nervous system. Salivary gland BDNF may mediate this
mechanism. However, it has also been reported that leptin, which
has an anti-feeding effect, is increased in dyslipidemia models [38].
Leptin and BDNF have been shown to be correlate, but act through
different molecular mechanisms [39].

One limitation of this study is that we did not investigate the
expression and localization of TrkB, a receptor for BDNF. In a pre-
vious study, we reported that TrkB was not expressed in the salivary
glands or peri-oral tissues of rats [4,17]. Therefore, it is very
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Fig. 6. Concentrations of BDNF protein in rat various organs. ELISA showing the protein concentration of BDNF in the liver, adrenal gland, pancreas, kidney, and inguinal region
fat. In the hypertriglyceridemia group, BDNF protein was significantly decreased in the liver (A) and adrenal gland (B) compared to in the control group. The hypertriglyceridemia
group showed no significant difference in the pancreas (C), kidney (D), and inguinal region fat (E). Values are the mean + standard deviation (n = 6); *p < 0.05, **p < 0.001 by

Welch's-t test. N.S: not significant.

important to examine the effects of TrkB on rats consuming a high-
fat diet. Additionally, the distribution and increase/decrease of
BDNF in systemic organs in the absence of salivary glands should be
examined using the three major salivary glands resection model
(sialoadenectomy). This may reveal the relationship between high-
fat diet intake and increased salivary gland BDNF.

5. Conclusion

We determined that hypertriglyceridemia due to a high-fat diet
increases Bdnf mRNA and protein levels in the rat submandibular
gland tissue and increased salivary BDNF secretion. Further studies
are needed to determine why consumption of a high-fat diet
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increases salivary gland tissue and salivary BDNF. Additionally, a
comprehensive analysis focused on lipids in the salivary glands of
the hypertriglyceridemia model and the factors enhancing BDNF
production is needed. In this study, the detailed mechanism of how
salivary gland BDNF is involved in feeding suppression is unknown
and will be examined in our future studies.
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