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Abstract 

Orexins (hypocretins) play a crucial role in arousal, feeding, and endocrine function. We 

previously reported that orexin-B activated respiratory neurons in isolated brainstem-spinal cords 

of neonatal rats. We here determined whether orexin-B antagonized respiratory depression 

induced by sevoflurane, propofol, or remifentanil. We recorded C4 nerve bursts as an index of 

inspiratory activity in the brainstem-spinal cord preparation. The preparation was superfused 

with a solution equilibrated with 3% sevoflurane alone for 10 min and the superfusate was then 

switched to a solution containing sevoflurane plus orexin-B. Sevoflurane decreased the C4 burst 

rate and integrated the C4 amplitude. The C4 burst rate and amplitude were reversed by 0.5 M 

orexin-B, but not by 0.1 M orexin-B. The decrease induced in the C4 burst rate by 10 M 

propofol or 0.01 M remifentanil was significantly antagonized by 0.1M orexin-B. Respiratory 

depression induced by a higher concentration (0.1 M) of remifentanil was not restored by 0.1 

M orexin-B. These results demonstrated that orexin-B antagonized respiratory depression 

induced by sevoflurane, propofol, or remifentanil.  
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1. Introduction  

Endogenous neuropeptide orexins (hypocretins) play an important role in the regulation of 

feeding, drinking, endocrine function, and sleep/wakefulness (Maleszka A et al., 2013; Sthiuchi 

T et al., 2009; de Lecea L et al., 1998; Sakurai T, 2007). Previous studies reported using 

immunohistochemistry or in situ hybridization that orexin-producing neurons (orexinergic 

neurons) were exclusively localized in the perifornical area and lateral and posterior 

hypothalamic area in the rat brain (Peyron C et al., 1998; Date Y et al., 1999; Nambu T et al., 

1999). The main projection sites in the brain were the paraventricular thalamic nucleus, arcuate 

nucleus of the hypothalamus, pedunculopontine tegmental nucleus, raphe nuclei, 

tuberomammillary nucleus, and locus coeruleus.  

Orexin A and orexin-B are processed from a common precursor, prepro-orexin, and stimulate 

target cells via two G-protein-coupled receptors, orexin receptor-1 (OX1R) and orexin receptor-2 

(OX2R). Orexin-A binds to both receptors, whereas orexin-B binds selectively to OX2R (Sakurai 

T et al., 1998). Orexinergic neuronal terminals and both orexin receptors are located in the 

autonomic centers of the hypothalamus and brainstem, including the periaqueductal gray, 

parabrachial nucleus, nucleus solitary tract, rostral ventrolateral medulla, and medullary raphe. 

These areas have been linked to the central control sites of cardiovascular and respiratory 

function. Nakamura (Nakamura A et al., 2007) demonstrated that orexins modulated the central 

CO2 response of ventilation via OX1R during wakefulness in the rodent. We previously 

examined the effects of the orexinergic system on central respiratory control by adding orexin-B 

to a superfusion medium in an isolated brain stem-spinal cord of the neonatal rat (Sugita T et al., 

2014). We showed that the application of orexin-B enhanced respiratory activity by depolarizing 

the inspiratory and pre-inspiratory neurons of the medulla.  
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On the other hand, the anesthetics using in the clinical practice depressed respiration as a side 

effect at anesthetic doses. Several studies showed that orexin-A facilitated emergence from 

propofol anesthesia (Shirasaka T et al., 2011; Zhang LN et al., 2012) and the emergence time 

from isoflurane anesthesia was prolonged in orexin-neuron-ablated mice (Kuroki C et al., 2013). 

We hypothesized that antagonism between orexin-B and anesthetics presented in respiratory 

control system. To examine this hypothesis, we used two anesthetics and one sadative, that is, 

sevoflurane, propofol and remifentanil, which supposed to be different mechanisms of anesthetic 

or sedative action and were widely used in the clinical practice. Sevoflurane is well-known for a 

volatile anesthetic.  In a previous study using a brainstem-spinal cord preparation of the neonatal 

rat, we showed that sevoflurane decreased both the C4 burst rate and amplitude. (Kuribayashi J 

et al., 2008). A separate perfusion of sevoflurane to the medulla and the spinal cord decreased the 

C4 burst rate and amplitude, respectively. The GABAA receptor antagonists, picrotoxin and 

bicuculline, attenuated the reduction observed in the C4 burst rate, but not in the amplitude. Thus, 

we concluded that GABAA receptors were involved in sevoflurane-induced respiratory 

depression within the medulla, but not within the spinal cord. Intravenous anesthetic propofol 

mainly decreased the C4 burst rate in the brainstem-spinal cords of neonatal rats, and this could 

be reversed by the administration of bicuculline (Kashiwagi M et al., 2004). The depressive 

effects of sevoflurane and propofol were, at least partly, mediated by agonistic actions on 

GABAA receptors (Garcia PS et al., 2010). Remifentanil is a synthetic -opioid agonist that is a 

potent analgesic and sedative and also induces respiratory depression.  Remifentanil is rapidly 

broken down by esterases in the blood and tissue; therefore, remifentanil has recently been used 

in clinical practice as a short-acting anesthetic agent (Egan TD et al., 1993; Westmoreland CL et 

al., 1993). In the present study, therefore, we determined whether orexin-B antagonized 
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respiratory depression induced by sevoflurane, propofol, or remifentanil in the brainstem-spinal 

cords of neonatal rats. 
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2. Methods  

 
2.1. Preparation 

All procedures were conducted in accordance with the guidelines of the Uekusa Gakuen 

University Laboratory Animal Care and Use Committee. Data were obtained from 60 neonatal 

Wistar rats (2-3 days old). The isolated brainstem-spinal cord preparation has been described in 

detail elsewhere (Kuwana S et al., 1998). In brief, rats were deeply anesthetized with diethyl 

ether, and the brainstem and cervical spinal cord were isolated in a chamber filled with 

oxygenated artificial cerebrospinal fluid (ACSF). The cerebellum and pons were ablated. Each 

preparation was placed ventral side up in a recording chamber (volume, 2 ml) and superfused 

(flow 4ml/min) with control ACSF equilibrated with a control gas mixture (5 % CO2 in O2; 

pH7.4). Its temperature was maintained at 25-26 °C. The composition of the ACSF was (in mM): 

126 NaCl, 5 KCl, 1.25 NaH2PO4, 1.5 CaCl2, 1.3 MgSO4, 26 NaHCO3, and 30 glucose. C4 

ventral root activity was recorded using a glass suction electrode, amplified with a conventional 

AC amplifier (AVH 11, Nihon Kohden, Tokyo, Japan), and integrated (time constant: 100 ms). 

We measured the C4 burst rate as an index of the respiratory rate (Murakoshi T et al., 1985) and 

the integrated amplitude as an index of tidal volume (Eldridge FL, 1971). All amplitude data 

were normalized to the values obtained during a drug-free control state, which was assigned a 

value of 100%.   

 

2.2. Drug administration 

Sevoflurane was applied according to the method described by Matute (Matute E et al., 2004). 

Sevoflurane (Maruishi Pharmaceutical Co. Ltd, Osaka, Japan) was mixed with the control gas by 

a vaporizer (Sevotec 3, Ohmeda, Steeton, West Yorkshire, UK) at 3 vol%. The mixed gas was 
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bubbled into the ACSF for 30 min. A stock solution of 1 M propofol (Aldridge, Germany) were 

prepared in dimethylsulfoxide (Wako Pure Chemical, Japan) and diluted with control ACSF to 

give 10 µM. Remifentanil (Janssen Pharma., Japan) was diluted with control ACSF to give a 

final concentrations of 0.01 µM, 0.05 µM, and 0.1 µM. Orexin-B (Rat, Mouse) was obtained 

from the Peptide Institute Inc. (Japan). We administered 0.01 0.1 µM or 0.5 µM orexin-B 

dissolved in ACSF containing sevoflurane, propofol, or remifentanil. 

 

2.3. Protocols 

After the preparation was superfused with control ACSF (CO2 fraction 5 %) for at least 30 min 

and C4 activity reached a steady state, the superfusate bathing the preparation was replaced as 

follows: ACSF containing anesthetics for 10 min, ACSF containing anesthetics in the presence of 

0.01 0.1 µM or 0.5 µM of orexin-B for 10 min, and control ACSF for a 10-min washout.  

 

2.4. Data Analysis 

All signals were fed into a personal computer after A/D conversion (Power Lab/4sp, 

ADInstruments, Castle Hill, Australia) and recorded for subsequent analyses (Chart version 7, 

ADInstruments, Castle Hill, Australia). An analysis of the respiratory parameters was performed 

off-line. Respiratory parameters obtained before the superfusion of ACSF containing drugs were 

defined as control values. Changes in the C4 burst rate and amplitude were compared using a 

one-way analysis of variance, followed by the Tukey-Kramer test. Differences between two 

groups were compared using Welch’s t-test. All statistical analyses were conducted using Statcel 

(OMS publisher, Japan). All values were reported as the mean ± SE and all P values < 0.05 were 

considered significant.
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3. Results  

 
3.1. Antagonism of orexin-B on respiratory depression induced by sevoflurane 

Figure 1 shows a representative recording of C4 activity during the superfusion of 3 % 

sevoflurane with and without 0.5 μM orexin-B. The superfusion of the brainstem-spinal cord 

with 3 % sevoflurane for 10 min reduced the C4 burst rate and integrated C4 amplitude. By 

switching the superfusate from sevoflurane to sevoflurane with orexin-B, both the C4 burst rate 

and integrated C4 amplitude increased. Tonic firing of non-respiratory activity was observed 

during the superfusion of 3 % sevoflurane with 0.5 μM orexin-B. 

 Table 1 shows a summary of the antagonism of 0.1 μM and 0.5 μM orexin-B on respiratory 

depression induced by 3 % sevoflurane. The C4 burst rate was significantly reduced during the 

superfusion of 3 % sevoflurane, while the reduction observed in the integrated C4 amplitude was 

not significant. Neither the C4 burst rate nor integrated C4 amplitude increased during the 

superfusion of 3 % sevoflurane with 0.1 μM orexin-B. However, both the C4 burst rate and 

integrated C4 amplitude were significantly increased during the superfusion of 3 % sevoflurane 

with 0.5 μM orexin-B. These values were larger than those of the control. These results 

demonstrated that respiratory depression by 3 % sevoflurane was antagonized by 0.5 μM, but not 

0.1 μM orexin-B.  

 

3.2. Antagonism of orexin-B on respiratory depression induced by propofol 

Figure 2 shows a representative recording of C4 activity during the superfusion of 10 μM 

propofol with and without 0.1 μM orexin-B. The superfusion of 10 μM propofol for 10 min 

reduced the C4 burst rate, but not the integrated C4 amplitude. The C4 burst rate increased when 

the superfusate was switched from propofol to propofol with 0.1 μM orexin-B.  
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 Table 2 shows a summary of the antagonism of 0.1 μM orexin-B on respiratory depression 

induced by 10 μM propofol. The superfusion of 10 μM propofol led to a significant reduction in 

the C4 burst rate, but not in the integrated C4 burst rate. The C4 burst rate increased during the 

superfusion of 10 μM propofol with 0.1 μM orexin-B. The integrated C4 amplitude increased 

slightly during the superfusion of 10 μM propofol with 0.1 μM orexin-B. These results showed 

that the depression induced in the C4 burst rate by 10 μM propofol was antagonized by 0.1 μM 

orexin-B.  The integrated C4 amplitude was unaffected by the superfusion of 10 μM propofol or 

10 μM propofol plus 0.1 μM orexin-B. 

 

3.3. Antagonism of orexin-B on respiratory depression induced by remifentanil 

Figure 3 shows a representative recording of C4 activity during the superfusion of 0.01 μM 

remifentanil with and without 0.1 μM orexin-B. The superfusion of 0.01 μM remifentanil for 10 

min reduced the C4 burst rate, but not the integrated C4 amplitude. An increase was observed in 

the C4 burst rate when the superfusate was switched from remifentanil to remifentanil plus 0.1 

μM orexin-B.  

 Table 3 shows a summary of the antagonism of 0.1 μM orexin-B on respiratory depression 

induced by 0.01 μM, 0.05 μM, or 0.1 μM remifentanil. The superfusion of any concentration of 

remifentanil induced significantly decreases in the C4 burst rate, and reduced the integrated C4 

amplitude. Regarding the C4 burst rate, 0.1μM orexin-B antagonized the respiratory depression 

induced by 0.01μM remifentanil. However, the decrease observed in the respiratory rate by 

0.05μM or 0.1μM remifentanil was not restored by the superfusion of 0.1μM orexin-B. The 

integrated C4 amplitude did not change during the superfusion of 0.01μM remifentanil.  The 

superfusion of 0.01 μM remifentanil plus 0.1 μM orexin-B increased the integrated C4 amplitude. 
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No significant changes were observed in the integrated C4 amplitude during the superfusion of a 

higher concentration of remifentanil (0.05 μM or 0.1 μM). Furthermore, the additional 

superfusion of orexin-B was ineffective on the integrated C4 amplitude. These results 

demonstrated that respiratory depression induced by 0.01 μM remifentanil was antagonized by 

0.1 μM orexin-B, whereas that induced by a higher concentration of remifentanil was not 

antagonized. 
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4. Discussion 

 

In the present study, we showed that orexin-B antagonized the respiratory depression induced 

by sevoflurane, propofol, and remifentanil, which are widely used in clinical practice. This result 

suggests that orexin-B derivatives may be used as an emergence drug for anesthesia. 

The result that orexin-B antagonized the respiratory depression induced by different types of 

anesthetics suggested that targeting sites or receptors of orexin-B and anesthetics may not be 

common. Accumulating evidence has indicated that sevoflurane and propofol enhanced the 

function of GABAA receptors, the most abundant fast inhibitory neurotransmitter receptor in the 

central nervous system (Garcia PS et al., 2010; Stucke AG et al. 2005; Yip GMS et al. 2013).  

We previously confirmed that the depressive effects of sevoflurane and propofol were, at least 

partly, mediated by agonistic actions on GABAA receptors in the respiratory neurons (Kashiwagi 

M et al., 2004; Kuribayashi J et al., 2008). The depressive effects of remifentanil were shown to 

be mediated by the activation of -opioid receptors (Egan TD et al., 1993; Westmoreland CL et 

al., 1993). Thus, the antagonistic effects of orexin-B in respiratory depression induced by the 

anesthetics used in the present study may not have occurred through a specific common receptor 

of the neuromodulator or neurotransmitter. 

Orexins are strongly neuroexcitatory, as demonstrated in an initial study (de Lecea L et al., 

1998) and subsequent studies on different brain regions mainly through the use of 

electrophysiological techniques on isolated preparations. The excitatory effects of orexins have 

been attributed to pre- and postsynaptic mechanisms, i.e., enhanced transmitter release and the 

facilitation of depolarization, respectively. Two classical mechanisms appear to contribute to 

postsynaptic depolarization: the inhibition of K+ channels and activation of nonselective cation 
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channels. We previously reported that the application of orexin-B induced depolarization and 

decreased membrane resistance in inspiratory and pre-inspiratory neurons. These results 

suggested that the depolarization of inspiratory and pre-inspiratory neurons was induced by the 

influx of cations (Yang and Ferguson 2002). Thus, we suggest that the excitation of medullary 

respiratory neurons by orexin-B may have contributed to its antagonistic effects on respiratory 

depression induced by general anesthetics. 

 A pre-synaptic mechanism for neural excitation should also be considered in the present study. 

Kuwaki et al. (2010) reported that orexins activated the central chemoreceptors of the respiratory 

control system (Kuwaki T et al., 2010). Multiple sites have been suggested for central 

chemoreceptors in the lower brain stem, including the retrotrapezoid nucleus (RTN), nucleus 

tractus solitarii (NTS), medullary raphe nucleus, locus coeruleus, and parabrachial nucleus 

(Nattie E., 2000; Guynet PG et al., 2013). Histochemical studies demonstrated the presence of 

orexin-immunoreactive axons and orexin receptors within the RTN, NTS, raphe nucleus, and 

locus coeruleus (Yang and Ferguson 2002; Marcus JN et al., 2001). Therefore, we suggested that 

the orexin pre-synaptically activated these chemosensitive neurons and induced the excitation of 

medullary respiratory neurons (Kuwaki T et al., 2010). 

On the other hand, Shirasaka et al. (2011) showed that an intracerebroventricular injection of 

orexin A decreased the time emergence from propofol anesthesia and reversed the decrease in 

noradrenaline and dopamine release induced by propofol (Shirasaka T et al., 2011). They 

concluded that the orexin system may facilitate emergence from propofol anesthesia by 

increasing central noradrenergic and dopaminergic activities. This catecholaminergic system was 

shown to modulate respiratory activity in the brainstem-spinal cords of neonatal rats (Fujii M et 

al., 2004; Ito Y et al., 2009). Thus, in the present study, the possibility that orexin-B may have 
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reversed the decrease in noradrenaline and dopamine release induced by anesthesia cannot be 

ruled out.  

In conclusion, orexin-B had antagonistic effects on central respiratory depression induced by 

sevoflurane, propofol, and remifentanil in the brainstem-spinal cord preparations from neonatal 

rats. However, the mechanisms underlying the antagonistic effects of orexin-B on respiratory 

depression induced by the anesthetics and opioids remains unclear. Further studies are warranted 

to evaluate these mechanisms. However, respiratory depression is a severe side effect of general 

anesthesia in clinical practice. Therefore, orexin-B derivatives may be used for emergence from 

general anesthesia.  
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Figure Legends 

 
Figure 1. Antagonistic effects of orexin-B on respiratory depression induced by sevoflurane. The 

rate of C4 bursts and integrated C4 amplitude decreased with the superfusion of ACSF 

equilibrated with 3% sevoflurane. The superfusion of ACSF containing 0.5M orexin-B and 

equilibrated with 3% sevoflurane reversed the decrease in the rate of C4 bursts and integrated C4 

amplitude. 

 

Figure 2. Antagonistic effects of orexin-B on respiratory depression induced by propofol. The 

rate of C4 bursts and integrated C4 amplitude decreased with the superfusion of ACSF 

containing 10M propofol. The superfusion of ACF containing 0.5 M orexin-B and 10M 

propofol reversed the decrease in the rate of C4 bursts and integrated C4 amplitude. 

 

Figure 3. Antagonistic effects of orexin-B on respiratory depression induced by remifentanil. The 

rate of C4 bursts and integrated C4 amplitude was decreased by the superfusion of ACSF 

containing 0.01M remifentanil. The superfusion of ACSF containing 0.1 M orexin-B and 

0.01M remifentanil reversed the decrease in the rate of C4 bursts and integrated C4 amplitude. 
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 Table 1.  Antagonism of orexin-B for respiratory depression by sevoflurane 

 

 
Concentration n 

C4 burst rate(min⁻¹) Integ. C4 amplitude (% of control) 

control 3%Sevoflurane 3%Sevoflurane+Orexin-B 3%Sevoflurane 3%Sevoflurane+Orexin-B 

Orexin-B 
0.1μM 14 6.5±0.7 3.5±0.5* 3.9±0.6NS     * 94.4±1.3** 97.7±1.3NS      *         

0.5μM 14 5.4±0.7 3.6±0.6* 8.2±1.2** 96.9±2.0NS 134±15.8* 

Data are shown as mean±S.E. 

n number of preparations; * p<0.05; ** p<0.01; NS not significant 

 

 

Table 2.  Antagonism of orexin-B for respiratory depression by propofol 

 

 
Concentration n 

C4 burst rate(min⁻¹) Integ. C4 amplitude (% of control) 

Control 10μM propofol 10μM propofol +Orexin-B 10μM propofol 10μM propofol +Orexin-B 

Orexin-B 0.1μM 8 4.2±0.4 2.7±0.4* 5.4±0.4** 119.9±17.8 157±30.4NS 

Data are shown as mean±S.E. 

n number of preparations; * p<0.05; ** p<0.01; NS not significant 
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Table 3.  Antagonism of orexin-B for respiratory depression by remifentanil 

 

 
Concentration n 

C4 burst rate(min⁻¹) Integ. C4 amplitude (% of control) 

Control Remifentanil Remifentanil +0.1μM Orexin-B Remifentanil Remifentanil +0.1μM Orexin-B 

Remifentanil 

0.01μM 7 5.6±0.7 3.1±0.6* 6.1±0.5*    * 101±1.7 167±18**   * 

0.05μM 6 6.4±0.9 2.9±1.0* 3.9±0.8NS 100±1.0 123±14NS 

0.1μM 9 5.2±0.7 2.8±0.7* 3.3±0.6NS 102±2.6 118±4.5NS 

Data are shown as mean±S.E. 

n number of preparations; * p<0.05; ** p<0.01; NS not significant 
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